Tüm Matematik Formülleri

  • Konbuyu başlatan Konbuyu başlatan kanuLt0
  • Başlangıç tarihi Başlangıç tarihi
FAİZ PROBLEMLERİ
f = a.n.t / 100 (yıllık faiz)
f = a.n.t / 1200 (aylık faiz)
f = a.n.t / 36000 (günlük faiz)
(a anapara, n faiz yüzdesi, t zaman, f faiz)
 
SAAT PROBLEMLERİ

|30.saat(akrep)-5,5.dakika(yelkovan|
=kollar arasındaki açı
 
HAREKET PROBLEMLERİ

Yol: x
Hız: v
Zaman: t
Yol= Hız . Zaman x=v.t
Hız = Yol / Zaman v=x/t
Zaman= Yol / Hız t=x/v
Hareketliler aynı anda ve zıt yönde ise x = (v1 + v2). t
Hareketliler aynı anda ve aynı yönde
ise x = (v1 - v2). t
Nehir problemlerinde ise her zaman kayığın hızından akıntının hızı çıkartılır
 
YAŞ PROBLEMLERİ
Bir kişinin yaşı a olsun,
T yıl önceki yaşı : x-T
T yıl sonraki yaşı : x + T olur.

İki kişinin yaşları oranı yıllara
göre orantılı değildir.
n kişinin yaşları toplamı b ise
T yıl sonra b + n.T
T yıl önce b - n.T

Kişiler arasındaki yaş farkı
her zaman aynıdır.
x yıl öncede yaş farkı a-b
x yıl sonrada yaş farkı a-b
Katlar ve oranlar hangi yılda verildiyse

denklem o yılda kurulur
 
İŞÇİ - HAVUZ PROBLEMLERİ
Bir işi;
A işçisi tek başına a saatte,
B işçisi tek başına b saatte,
C işçisi tek başına c saatte
yapabiliyorsa;
İş t saatte bitiyorsa
1/a + 1/b + 1/c = 1/t olur.

A işçisi 1 saatte işin 1/a sını bitirir.
A ile B birlikte t saatte işin

(1/a + 1/b).t sini bitirir.
A işçisi x saatte, B işçisi y saatte
C işçisi z saatte

çalışarak işin tam***** bitirdiklerine göre üçü birlikte işi k saatte bitiriyorsa,
k/x + k/y + k/z = 1 olur.

Havuz problemleri işçi problemleri
gibi çözülür.
A musluğu havuzun tam***** a saatte
doldurabiliyor.
Tabanda bulunan B musluğu dolu havuzun
tam***** tek başına b saatte boşaltabiliyor
olsun.
Bu iki musluk birlikte bu havuzun t saatte
(1/a - 1/b).t sini doldurur.
Bu havuzun dolması için b > a olmalıdır.
Eğer havuz t saatte doluyorsa
1/a - 1/b = 1/t
Havuz dolduruluyorsa dolduran musluk (+), boşaltan musluk (-) alınır.
Havuz boşaltılıyorsa dolduran musluk (-), boşaltan musluk (+) alınır.
 
TRİGONOMETRİ

geo_3.52.gif


SinC = karşı / hipotenüs
SinC = c / a
CosC = komşu / hipotenüs
CosC = b / a
TanC = karşı / komşu
TanC = c / b
CotC = komşu / karşı
CotC = b / c

tanx = sinx / cosx
cotx = cosx / sinx
tanx . cotx = 1
sinx.sinx + cosx.cosx = 1


ÖZDEŞLİKLER
İki Kare Farkı - Toplamı
I) a2 – b2 = (a – b) (a + b)
II) a2 + b2 = (a + b)2 – 2ab ya da
a2 + b2 = (a – b)2 + 2ab dir.

İki Küp Farkı - Toplamı
I) a3 – b3 = (a – b) (a2 + ab + b2 )
II) a3 + b3 = (a + b) (a2 – ab + b2 )
III) a3 – b3 = (a – b)3 + 3ab (a – b)
IV) a3 + b3 = (a + b)3 – 3ab (a + b)
Tam Kare İfadeler
I) (a + b)2 = a2 + 2ab + b2
(a + b)2 = (a – b)2 + 4ab

II) (a – b)2 = a2 – 2ab + b2
(a – b)2 = (a + b)2 – 4ab
III) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)

IV) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)




(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a – b)3 = a3 – 3a2b + 3ab2 – b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
 
PİSAGOR BAĞINTISI

geo_3.52.gif


a2=b2+c2
a.a=b.b+c.c
 
OLASILIK
P(A)=S(A) / S(E)
Bir olayın olasılığı=istenilen durumların sayısı / tüm durumların sayısı
p(A)=0 ise imkansız olay=gerçekleşmesi mümkün değil
P(A)=1 ise kesin olay=gerçekleşmesi kesin
Herhangi bir olayın olmama olasılığı:
P'(A) = 1 - P(A)

Bağımsız olay:
Birbirlerini etkilemiyorlarsa(para-zar)
P(A Ç B)= P(A) . P(B)

Ayrık iki olayın birleşiminin olasılığı:
P(AUB)= P(A) + P(B)

Ayrık olmayan iki olayın birleşiminin olasılığı:
P(AUB)= P(A) + P(B) - P(A ÇB)


n elemanlı bir kümenin r elemanlı permütasyonu:
P(n,r)=n! / (n-r)!
P(n,n)= n! p(0,0)= 1
P(n,0)= 1 P(n,1)= n
Dairesel Permütasyon: (n-2)!
 
KOMBİNASYON
n elemanlı kümenin r ' li kombinasyonları sayısının formülü,

a03974cb1b602156462f5b68485c119b.png
 
FAKTÖRİYEL
n!=1.2.3.4.5.........n
6!=1.2.3.4.5.6=720
 
ORANTI
1) a/b=c/d ise a.d= b.c
2) a : b : c = x : y : z ise,
Burada, a = x . k
b = y . k
c = z . k dır.
 
tumu yokkı xD mesela trigonometri toplam sembolünün fomullerı karmasık sayılar ve carpanlara ayırma
 
pardon trıgoneometrı yı gormemısım ama qL ygs ıcın cok ıdeal
 
Geri
Üst